Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 127: 58-64, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31088617

RESUMO

Cadaverine, also known as 1,5-pentanediamine, is an important platform chemical with a wide range of applications and can be produced either by fermentation or bioconversion. Bioconversion of cadaverine from l-lysine is the preferred method because of its many benefits, including rapid reaction time and an easy downstream process. In our previous study, we replaced pyridoxal-5-phosphate (PLP) with pyridoxal kinase (PdxY) along with pyridoxal (PL) because it could achieve 80% conversion with 0.4 M of l-lysine in 6 h. However, conversion was sharply decreased in the presence of high concentrations of l-lysine (i.e., 1 M), resulting in less than 40% conversion after several hours. In this study, we introduced an ATP regeneration system using polyphosphate kinase (ppk) into systems containing cadaverine decarboxylase (CadA) and PdxY for a sufficient supply of PLP, which resulted in enhanced cadaverine production. In addition, to improve transport efficiency, the use of surfactants was tested. We found that membrane permeabilization via hexadecyltrimethylammonium bromide (CTAB) increased the yield of cadaverine in the presence of high concentrations of l-lysine. By combining these two strategies, the ppk system and addition of CTAB, we enhanced cadaverine production up to 100% with 1 M of l-lysine over the course of 6 h.


Assuntos
Trifosfato de Adenosina/metabolismo , Cadaverina/metabolismo , Cetrimônio/metabolismo , Escherichia coli/metabolismo , Fosfato de Piridoxal/metabolismo , Biotransformação , Escherichia coli/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo
2.
Polymers (Basel) ; 11(3)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30960493

RESUMO

Polyhydroxyalkanoate (PHA) is a potential substitute for petroleum-based plastics and can be produced by many microorganisms, including recombinant Escherichia coli. For efficient conversion of substrates and maximum PHA production, we performed multiple engineering of branched pathways in E. coli. We deleted four genes (pflb, ldhA, adhE, and fnr), which contributed to the formation of byproducts, using the CRISPR/Cas9 system and overexpressed pntAB, which catalyzes the interconversion of NADH and NADPH. The constructed strain, HR002, showed accumulation of acetyl-CoA and decreased levels of byproducts, resulting in dramatic increases in cell growth and PHA content. Thus, we demonstrated the effects of multiple engineering for redirecting carbon flux into PHA production without any concerns regarding simultaneous deletion.

3.
J Microbiol Biotechnol ; 29(5): 776-784, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31030455

RESUMO

Polyhydroxybutyrate (PHB), the most well-known polyhydroxyalkanoate, is a bio-based, biodegradable polymer that has the potential to replace petroleum-based plastics. Lignocellulose hydrolysate, a non-edible resource, is a promising substrate for the sustainable, fermentative production of PHB. However, its application is limited by the generation of inhibitors during the pretreatment processes. In this study, we investigated the feasibility of PHB production in E. coli in the presence of inhibitors found in lignocellulose hydrolysates. Our results show that the introduction of PHB synthetic genes (bktB, phaB, and phaC from Ralstonia eutropha H16) improved cell growth in the presence of the inhibitors such as furfural, 4-hydroxybenzaldehyde, and vanillin, suggesting that PHB synthetic genes confer resistance to these inhibitors. In addition, increased PHB production was observed in the presence of furfural as opposed to the absence of furfural, suggesting that this compound could be used to stimulate PHB production. Our findings indicate that PHB production using lignocellulose hydrolysates in recombinant E. coli could be an innovative strategy for cost-effective PHB production, and PHB could be a good target product from lignocellulose hydrolysates, especially glucose.


Assuntos
Aclimatação/genética , Escherichia coli/genética , Furaldeído/efeitos adversos , Genes Sintéticos/genética , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Proteínas de Bactérias/genética , Cupriavidus necator/genética , Resistência a Medicamentos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Hordeum/enzimologia , Lignina/metabolismo , Pinus/enzimologia , Poaceae/embriologia
4.
J Microbiol Biotechnol ; 29(3): 382-391, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30661322

RESUMO

Many poultry eggs are discarded worldwide because of infection (i.e., avian flu) or presence of high levels of pesticides. The possibility of adopting egg yolk as a source material to produce polyhydroxyalkanoate (PHA) biopolymer was examined in this study. Cupriavidus necator Re2133/pCB81 was used for the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) or poly(3HHx), a polymer that would normally require long-chain fatty acids as carbon feedstocks for the incorporation of 3HHx monomers. The optimal medium contained 5% egg yolk oil and ammonium nitrate as a nitrogen source, with a carbon/nitrogen (C/N) ratio of 20. Time course monitoring using the optimized medium was conducted for 5 days. Biomass production was 13.1 g/l, with 43.7% co-polymer content. Comparison with other studies using plant oils and the current study using egg yolk oil revealed similar polymer yields. Thus, discarded egg yolks could be a potential source of PHA.


Assuntos
Ácido 3-Hidroxibutírico/biossíntese , Cupriavidus necator/metabolismo , Gema de Ovo/química , Biomassa , Biopolímeros/biossíntese , Biopolímeros/química , Caproatos , Carbono/metabolismo , Meios de Cultura/química , Cupriavidus necator/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Lipídeos/biossíntese , Lipídeos/química , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos
5.
Bioprocess Biosyst Eng ; 42(4): 603-610, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30617415

RESUMO

Polyhydroxybutyrates (PHB) are biodegradable polymers that are produced by various microbes, including Ralstonia, Pseudomonas, and Bacillus species. In this study, a Vibrio proteolyticus strain, which produces a high level of polyhydroxyalkanoate (PHA), was isolated from the Korean marine environment. To determine optimal growth and production conditions, environments with different salinity, carbon sources, and nitrogen sources were evaluated. We found that the use of a medium containing 2% (w/v) fructose, 0.3% (w/v) yeast extract, and 5% (w/v) sodium chloride (NaCl) in M9 minimal medium resulted in high PHA content (54.7%) and biomass (4.94 g/L) over 48 h. Addition of propionate resulted in the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(HB-co-HV)) copolymer as propionate acts as a precursor for the HV unit. In these conditions, the bacteria produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing a 15.8% 3HV fraction with 0.3% propionate added as the substrate. To examine the possibility of using unsterilized media with high NaCl content for PHB production, V. proteolyticus was cultured in sterilized and unsterilized conditions. Our results indicated a higher growth, leading to a dominant population in unsterilized conditions and higher PHB production. This study showed the conditions for halophilic PHA producers to be later implemented at a larger scale.


Assuntos
Organismos Aquáticos , Poli-Hidroxialcanoatos/biossíntese , Água do Mar/microbiologia , Vibrio , Microbiologia da Água , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/isolamento & purificação , Coreia (Geográfico) , Vibrio/genética , Vibrio/isolamento & purificação
6.
Biotechnol Bioeng ; 116(2): 333-341, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30450795

RESUMO

Glutaric acid is a promising alternative chemical to phthalate plasticizer since it can be produced by the bioconversion of lysine. Though, recent studies have enabled the high-yield production of its precursor, 5-aminovaleric acid (AMV), glutaric acid production via the AMV pathway has been limited by the need for cofactors. Introduction of NAD(P)H oxidase (Nox) with GabTD enzyme remarkably diminished the demand for oxidized nicotinamide adenine dinucleotide (NAD+ ). Supply of oxygen through vigorous shaking had a significant effect on the conversion of AMV with a reduced requirement of NAD + . A high conversion rate was achieved in Nox coupled GabTD reaction under optimized expression vector, terrific broth (TB), and pH 8.5 at high cell density. Supplementary expression of GabD resulted in the production of 353 ± 35 mM glutaric acid with 88.3 ± 8.7% conversion from 400 mM AMV. Moreover, the reaction with a higher concentration of AMV could produce 528 ± 21 mM glutaric acid with 66.0 ± 2.7% conversion. In addition, the co-biotransformation strategy of GabTD and DavBA whole cells could produce 282 mM glutaric acid with 70.8% conversion from lysine, compared to the 111 mM glutaric acid yield from the combined GabTD-DavBA system.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glutaratos/metabolismo , Lisina/metabolismo , Engenharia Metabólica/métodos , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Succinato-Semialdeído Desidrogenase/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Biotransformação , Escherichia coli/genética , Proteínas Recombinantes/metabolismo
7.
Bioresour Technol ; 271: 306-315, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30290323

RESUMO

Pretreatment of lignocellulosic biomass results in the formation of byproducts (furfural, hydroxymethylfurfural [HMF], vanillin, acetate etc.), which affect microbial growth and productivity. Furfural (0.02%), HMF (0.04%), and acetate (0.6%) showed positive effects on Ralstonia eutropha 5119 growth and polyhydroxyalkanoate (PHA) production, while vanillin exhibited negative effects. Response optimization and interaction studies between the variables glucose, ammonium chloride, furfural, HMF, and acetate using the response surface methodology resulted in maximum PHA production (2.1 g/L) at optimal variable values of 15.3 g/L, 0.43 g/L, 0.04 g/L, 0.05 g/L, and 2.34 g/L, respectively. Different lignocellulosic biomass hydrolysates (LBHs), including barley biomass hydrolysate (BBH), Miscanthus biomass hydrolysate (MBH), and pine biomass hydrolysate (PBH), were evaluated as potential carbon sources for R. eutropha 5119 and resulted in 1.8, 2.0, and 1.7 g/L PHA production, respectively. MBH proved the best carbon source, resulted in higher biomass (Yx/s, 0.31 g/g) and PHA (Yp/s, 0.14 g/g) yield.


Assuntos
Biomassa , Cupriavidus necator/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Ácido Acético/metabolismo , Carbono/metabolismo
8.
Enzyme Microb Technol ; 118: 57-65, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30143200

RESUMO

Glutaric acid is one of the promising C5 platform compounds in the biochemical industry. It can be produced chemically, through the ring-opening of butyrolactone followed by hydrolysis. Alternatively, glutaric acid can be produced via lysine degradation pathways by microorganisms. In microorganisms, the overexpression of enzymes involved in this pathway from E. coli and C. glutamicum has resulted in high accumulation of 5-aminovaleric acid. However, the conversion from 5-aminovaleric acid to glutaric acid has resulted in a relatively low conversion yield for unknown reasons. In this study, as a solution to improve the production of glutaric acid, we introduced gabTD genes from B. subtilis to E. coli for a whole cell biocatalytic approach. This approach enabled us to determine the effect of co-factors on reaction and to achieve a high conversion yield from 5-aminovaleric acid at the optimized reaction condition. Optimization of whole cell reaction by different plasmids, pH, temperature, substrate concentration, and cofactor concentration achieved full conversion with 100 mM of 5-aminovaleric acid to glutaric acid. Nicotinamide adenine dinucleotide phosphate (NAD(P)+) and α-ketoglutaric acid were found to be critical factors in the enhancement of conversion in selected conditions. Whole cell reaction with a higher concentration of substrates gave 141 mM of glutaric acid from 300 mM 5-aminovaleric acid, 150 mM α-ketoglutaric acid, and 60 mM NAD+ at 30 °C, with a pH of 8.5 within 24 h (47.1% and 94.2% of conversion based on 5-aminovaleric acid and α-ketoglutaric acid, respectively). The whole cell biocatalyst was recycled 5 times with the addition of substrates; this enabled the accumulation of extra glutaric acid.


Assuntos
4-Aminobutirato Transaminase/metabolismo , Aminoácidos Neutros/metabolismo , Bacillus subtilis/enzimologia , Escherichia coli/metabolismo , Glutaratos/metabolismo , Succinato-Semialdeído Desidrogenase/metabolismo , 4-Aminobutirato Transaminase/genética , Bacillus subtilis/genética , Biocatálise , Escherichia coli/genética , Succinato-Semialdeído Desidrogenase/genética
9.
Bioprocess Biosyst Eng ; 41(8): 1195-1204, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29737409

RESUMO

n-Butanol is considered as the next-generation biofuel, because its physiochemical properties are very similar to fossil fuels and it could be produced by Clostridia under anaerobic culture. Due to the difficulties of strict anaerobic culture, a host which can be used with facultative environment was being searched for n-butanol production. As an alternative, Shewanella oneidensis MR-1, which is known as facultative bacteria, was selected as a host and studied. A plasmid containing adhE2 encoding alcohol dehydrogenase, various CoA transferases (ctfAB, atoAD, pct, and ACT), and acs encoding acetyl-CoA synthetase were introduced and examined to S. oneidensis MR-1 to produce n-butanol. As a result, ctfAB, acs, and adhE2 overexpression in S. oneidensis-pJM102 showed the highest n-butanol production in the presence of 2% of N-acetylglucosamine (NAG), 0.3% of butyrate, and 0.1 mM of IPTG for 96 h under microaerobic condition. When more NAG and butyrate were fed, n-butanol production was enhanced, producing up to 160 mg/L of n-butanol. When metal ions or extra electrons were added to S. oneidensis-pJM102 for n-butanol production, metal ion as electron acceptor or supply of extra electron showed no significant effect on n-butanol production. Overall, we made a newly engineered S. oneidensis that could utilize NAG and butyrate to produce n-butanol. It could be used in further microaerobic condition and electricity supply studies.


Assuntos
1-Butanol/metabolismo , Proteínas de Bactérias , Butiratos/metabolismo , Microrganismos Geneticamente Modificados , Plasmídeos , Shewanella , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Clostridium/genética , Microrganismos Geneticamente Modificados/crescimento & desenvolvimento , Microrganismos Geneticamente Modificados/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Shewanella/genética , Shewanella/crescimento & desenvolvimento
10.
Biotechnol Bioeng ; 115(8): 1971-1978, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29663332

RESUMO

Acetic acid is an abundant material that can be used as a carbon source by microorganisms. Despite its abundance, its toxicity and low energy content make it hard to utilize as a sole carbon source for biochemical production. To increase acetate utilization and isobutanol production with engineered Escherichia coli, the feasibility of utilizing acetate and metabolic engineering was investigated. The expression of acs, pckA, and maeB increased isobutanol production by up to 26%, and the addition of TCA cycle intermediates indicated that the intermediates can enhance isobutanol production. For isobutanol production from acetate, acetate uptake rates and the NADPH pool were not limiting factors compared to glucose as a carbon source. This work represents the first approach to produce isobutanol from acetate with pyruvate flux optimization to extend the applicability of acetate. This technique suggests a strategy for biochemical production utilizing acetate as the sole carbon source.


Assuntos
Acetato-CoA Ligase/biossíntese , Acetato-CoA Ligase/metabolismo , Acetatos/metabolismo , Butanóis/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Engenharia Metabólica/métodos , Acetato-CoA Ligase/genética , Escherichia coli/genética
11.
Bioresour Technol ; 257: 92-101, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29486411

RESUMO

Ralstonia eutropha is a well-known microbe reported for polyhydroxyalkonate (PHA) production, and unable to utilize sucrose as carbon source. Two strains, Ralstonia eutropha H16 and Ralstonia eutropha 5119 were co-cultured with sucrose hydrolyzing microbes (Bacillus subtilis and Bacillus amyloliquefaciens) for PHA production. Co-culture of B. subtilis:R. eutropha 5119 (BS:RE5) resulted in best PHA production (45% w/w dcw). Optimization of the PHA production process components through response surface resulted in sucrose: NH4Cl:B. subtilis: R. eutropha (3.0:0.17:0.10:0.190). Along with the hydrolysis of sucrose, B. subtilis also ferments sugars into organic acid (propionic acid), which acts as a precursor for HV monomer unit. Microbial consortia of BS:RE5 when cultured in optimized media led to the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV) with 66% w/w of dcw having 16 mol% HV fraction. This co-culture strategy overcomes the need for metabolic engineering of R. eutropha for sucrose utilization, and addition of precursor for copolymer production.


Assuntos
Bacillus subtilis , Cupriavidus necator , Poliésteres , Consórcios Microbianos , Saccharum , Açúcares
12.
Osong Public Health Res Perspect ; 2(2): 115-26, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24159461

RESUMO

OBJECTIVES: To confirm genotype diversities of clinical isolates of Bordetella pertussis and to evaluate the risk of pertussis outbreak in Korea. METHODS: Seven housekeeping genes and 10 antigenic determinant genes from clinical B. pertussis isolates were analyzed by Multilocus sequence typing (MLST). RESULTS: More variant pattern was observed in antigenic determinant genes. Especially, PtxS1 gene was the most variant gene; five genotypes were observed from eight global genotypes. In the bacterial type, the number of observed sequence types in the isolates was seven and the most frequent form was type 1 (79.6%). This major sequence type also showed a time-dependent transition pattern. Older isolates (1968 and 1975) showed type 1 and 6 in housekeeping genes and antigenic determinant genes, respectively. However, these were changed to type 2 and 1 in isolates 1999-2008. This transition was mainly attributed to genotype change of PtxS1 and Fim3 gene; the tendency of genotype change was to avoid vaccine-derived genotype. In addition, there was second transition in 2009. In this period, only the sequence type of antigenic determinant genes was changed to type 2. Based Upon Related Sequence Types (BURST) analysis confirmed that there were two clonal complexes (ACCI and ACCII) in the Korean isolates. Moreover, the recently increased sequence type was revealed as AST2 derived from AST 3 in ACCI. CONCLUSIONS: Genotype changes in Korean distributing strains are still progressing and there was a specific driving force in antigenic determinant genes. Therefore continuous surveillance of genotype change of the distributing strains should be performed to confirm interrelationship of genotype change with vaccine immunity.

13.
Korean J Hepatol ; 11(2): 125-34, 2005 Jun.
Artigo em Coreano | MEDLINE | ID: mdl-15980671

RESUMO

BACKGROUND/AIMS: Adefovir dipivoxil is effective in patients with lamivudine-resistant hepatitis B virus (HBV). However, little is known about its role in Korean patients with decompensated liver cirrhosis. We retrospectively evaluated the efficacy and safety of adefovir dipivoxil in patients with decompensated liver cirrhosis with lamivudine resistance, and we compared this to the patients having compensated liver disease. METHODS: The patients with lamivudine-resistant chronic liver disease were enrolled and they received adefovir dipivoxil 10 mg daily. The clinical course and the biochemical and virological response of the decompensated cirrhosis group were compared with those of the patients with compensated liver disease group. RESULTS: One-hundred and one patients (the decompensated cirrhosis group, n=53; the compensated liver disease group, n=48) were evaluated. During the following up, 13 patients in the decompensated group and 4 patients in the compensated group dropped out of the treatment (P=0.011). After adefovir treatment, the proportion of patients with serum HBV DNA below 0.5 pg/mL in the decompensated group was less than that in the compensated group (50.9% vs. 83.3%, P=0.001), but the rates of normalized ALT, HBeAg loss and HBeAg seroconversion did not differ. The change of the Child-Pugh score in the decompensated group was 9.1 +/- 1.8 to 6.9 +/- 1.6 (P<0.001). The biochemical response in decompensated group was slower than that in the compensated group. Renal toxicity was not observed in either group. CONCLUSIONS: These results suggest that adefovir dipivoxil would be an effective and safe treatment for patients with decompensated liver cirrhosis with lamivudine resistance, but its effect might be limited and slower for decompensated cirrhosis.


Assuntos
Adenina/análogos & derivados , Antivirais/uso terapêutico , Farmacorresistência Viral , Hepatite B/tratamento farmacológico , Lamivudina/uso terapêutico , Cirrose Hepática/virologia , Organofosfonatos/uso terapêutico , Adenina/uso terapêutico , Adulto , Idoso , Feminino , Hepatite B/complicações , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...